
1

Robotics With the XBC

Controller
Session 8

Instructor: David
Culp

Email:
culpd@cfbisd.edu

mailto:culpd@cfbisd.edu

2

Learning Goals

 The student will learn advanced
techniques for working with the XBC
camera including:
 Bounding box data.
 Filtering blob sizes.
 Displaying live video.
 Changing the camera display and config

settings.
 Getting and setting the white balance of the

XBC.
 Getting and setting the color models on the

XBC.

3

Getting Bounding Box Data

 track_bbox_left(int ch, int i);
 gets the pixel x coordinate of the leftmost pixel in the blob

 track_bbox_right(int ch, int i);
 gets the pixel x coordinate of the rightmost pixel in the blob

 track_bbox_top(int ch, int i);
 gets the pixel y coordinate of the topmost pixel in the blob

 track_bbox_bottom(int ch, int i);
 gets the pixel y coordinate of the bottommost pixel in the blob

 track_bbox_width(int ch, int i);
 gets the pixel x width of the bounding box of the blob. This is

equivalent to track_bbox_right - track_bbox_left

 track_bbox_height(int ch, int i);
 gets the pixel y height of the bounding box of the blob. This is

equivalent to track_bbox_bottom - track_bbox_top

4

Camera API Review

 Remember to #use “xbccamlib.ic.”

 Always call track_update() to get new tracking data!
 int track_count(int ch);

 Returns the number of blobs on color channel ch the camera
is currently tracking.

 int track_size(int ch, int i);

 Returns the size, in pixels, of blob number i on channel ch.

 int track_x(int ch, int i);

 Returns the x coordinate of the center of blob number i on
channel ch.

 int track_y(int ch, int i);

 Returns the y coordinate of the center of blob number i on
channel ch.

 int track_confidence(int ch, int i);

 Returns the confidence value (0-100) that blob i on channel
ch is the correct color.

• Higher numbers mean better confidence.

5

Why Use Bounding Box
Data?

 Allows more precise control when
positioning our robot in relation to an
object.

 Think of our challenge.
 We need to drive towards an orange object.

 We must stop a certain distance from it.

 We must then position ourselves in such a
way that the robot can grasp the ball.

 We can proportionally move the robot until
the edges of the object are exactly where we
need it and the bounding box width and
height are where we need them.

6

Printing Bounding Box Data
#use "xbccamlib.ic"

void main()

{

while(!b_button())

{

track_update(); // We must always call track update to get new
tracking data!

display_clear();

printf("track_bbox_left: %d\n", track_bbox_left(0,0));

printf("track_bbox_right: %d\n", track_bbox_right(0,0));

printf("track_bbox_top: %d\n", track_bbox_top(0,0));

printf("track_bbox_bottom: %d\n", track_bbox_bottom(0,0));

printf("track_bbox_width: %d\n", track_bbox_width(0,0));

printf("track_bbox_height: %d\n", track_bbox_height(0,0));

sleep(0.2);

}

}

7

Filtering Out Small Blobs

 void track_set_minarea(int minarea);

 Sets the minimum area for a blob to be
tracked. Blobs below this size will be ignored.

 Default area is 100.

 Can be set interactively (see on screen
demo).

 int track_get_minarea();

 Returns the current minimum area of a blob
to be considered valid.

8

Showing Live Video on the
XBC.
 void track_show_display(int show_processed, int

frameskip, int channel_mask);

 show_processed controls what type of video is
displayed.

• 0 = raw video.

• Non zero = processed video.

 frameskip = # of frames skipped between updates.
• Lower numbers = smoother video but more processing

time.

 channel_mask = determines which channels (0-2) are
tracked.

• A three bit binary number. The LSB = channel 0, the
middle bit controls channel 1 and the MSB is channel 2.

• Examples.
• 0b111 = Track all three channels.

• 0b101 = Track channels 0 and 2.

• 0b001 = Only track channel 2.

9

Example of Live Video

#use "xbccamlib.ic"

void main()

{

while(!b_button())

{

//Show processed video with 5 frames
skipped and only show tracking data for
channels 0 and 2

track_show_display(1, 5, 0b101);

}

}

10

Setting Camera Display
Options

 See onscreen demo to learn how to
set the XBC camera display options
interactively.

11

White Balance

 Different light sources contain differing amounts
of red and blue.
 The sun and incandescent lights are much redder.

 Fluorescent lights are much bluer.

 Our eyes “auto correct” to different lights.

 Cameras cannot.

• Objects will “appear” as different colors under
different lighting.

• Big problem in Botball!

 The XBC defaults to auto setting the white balance.

 We can interactively adjust the white balance of the
camera.

 Use the Vision/Camera Config option from the XBC
menus to set the white balance.

 See on screen demonstration.

12

Setting White Balance
Programmatically

 We can get and set white balance
information via IC.

 This rarely needs to be done.

 int camera_get_awb();

 Returns a 1 if AWB is on, otherwise 0.

 int camera_set_awb(int enable);

 Sets the AWB mode of the camera.

• 1 = turn AWB on.

• 0 = turn AWB off.

13

More on Setting the White
Balance.

 int camera_get_wb_color_temp(int color[]);

 Returns a 2 element array corresponding to
the red and blue levels.

 int camera_set_wb_color_temp(int color[]);

 color[] is a two element array which is the red
and blue levels to use.

 color[0] = red.

 color[1] = blue.
• 8 bit numbers (0-255).

• Lower numbers filter out more of that color.

 Returns a 0 for success and a –1 for failure.

14

// This program shows how to read and set the WB levels on the XBC

#use "xbccamlib.ic"

void main()
{

int color[2]; // This two element array will hold the red and blue color levels

display_clear();
printf("press B to get the current WB componets\n");
while(!b_button()){ }; // wait for b button
beep();
sleep(1.0);
camera_get_wb_color_temp(color); // Fills two element array with the current WB levels
printf("Red=%d, Blue=%d\n", color[0], color[1]);// Print the current WB config levels

printf("press B to set a new WB level\n");
while(!b_button()){ }; // wait for b button
beep();
sleep(1.0);

color[0] = 200; // This is the red level, we will see the image with LOTS of red in it.
color[1] = 0; //This is the blue level, filter out all blue!
camera_set_wb_color_temp(color); // Set the levels
printf("Red=%d, Blue=%d\n", color[0], color[1]); // Print them again to show they have
changed!

}

15

Color Model API’s

 We can dynamically change the color models stored inside
the XBC through IC.

 The XBC uses an HSV color model.

 Hue = “color.”

• Red ~= 0, Green ~= 100, Blue ~= 240.

 Saturation (range 0 - 223) is how pure and intense the
hue is.

• 0 = totally unsaturated, such as black, white, or
gray; 223 = totally saturated, such as neon orange,
fire-engine red.

• Color distinction is more robust, for pixels with high
Saturation.

 Value (range 0-223) is how dark or bright the pixel is:
0 = black, 223 = bright.

• color distinction is more robust, for pixels with high
Value.

16

We Can See HSV Values
Dynamically on the XBC

 See on screen demonstration of
displaying HSV values for color
models.

17

The Color Model array

 Four element array:

 model[0] = hMin

 model[1] = hMax

 model[2] = sMin

 model[3] = vMin

18

Setting and Retrieving Color
Model Data.

 int color_get_model(int model_num, int
model[]);
 int model_num = color model number (0-2)

 int model[] = Four element array to hold
model data

 int color_set_model(int model_num, int
model[]);
 int model_num = color model number (0-2)

 int model[] = Four element array to hold
model data

19

//An example of dynamically reading and setting color models in IC on the XBC

#use "xbccamlib.ic"

void main()

{

int model[4]; //Holds our color models

color_get_model(0, model); //Fill our array with the current model data!

/*

model[0] = hMin

model[1] = hMax

model[2] = sMin

model[3] = vMin

*/

display_clear();

//Print out color values!

printf("H=(%d->%d) \nS>=%d\nV>=%d\n", model[0], model[1], model[2], model[3]);

//set out color model array to a "blue" color

model[0] = 201;

model[1] = 256;

model[2] = 161;

model[3] = 100;

printf("Changing color model!\n");

color_set_model(0,model); //Send the changes to the XBC

printf("New color model:\n");

printf("H=(%d->%d) \nS>=%d\nV>=%d\n", model[0], model[1], model[2], model[3]);

}

20

A Way to Do It Without
Arrays!

 int color_get_ram_hmin(int model_num);

 int color_get_ram_hmax(int model_num);

 int color_get_ram_smin(int model_num);

 int color_get_ram_smax(int model_num);

 int color_get_ram_vmin(int model_num);

 int color_get_ram_vmax(int model_num);

 int color_set_ram_model(int model_num, int
hmin, int hmax, int smin, int vmin);

21

//An example of dynamically reading and setting color models in IC on the XBC

#use "xbccamlib.ic"

void main()

{

int model[4]; //Holds our color models

color_get_model(0, model); //Fill our array with the current model data!

/*

model[0] = hMin

model[1] = hMax

model[2] = sMin

model[3] = vMin

*/

display_clear();

//Print out color values!

printf("H=(%d->%d) \nS>=%d\nV>=%d\n", model[0], model[1], model[2], model[3]);

printf("Changing color model!\n");

//send a new color model to the XBC!

color_set_ram_model(0, 201, 256, 161, 100);

printf("New color model:\n");

printf("H=(%d->%d) \nS>=%d\nV>=%d\n", model[0], model[1], model[2], model[3]);

}

22

Tonight's Challenge
(Continued From Session 7)

1. You should have the arm built.

2. Using what you know about IC, simple XBC
vision, servos and motor control write a
program that will:

1. Seek out and find an orange ball.

2. Grasp and pick up the orange ball.

3. The solution to last weeks challenge will be
VERY helpful.

4. This is a big challenge, use incremental design!

23

Possible Sub-problems to
Solve
1. Go out a fixed distance turn around and return [measure

the repeatability by measuring the end points after
careful positioning of the starting point and direction.]

2. Go out to a ball/tribble at fixed position, about 3 feet
away, and grab it; return to starting point and drop it.
[note that both grabbing and lifting is needed to return
reliably with the object.]

3. Use vision to guide robot to a ball/tribble, about 3 feet
away within the camera FOV, and grab it; return to
starting point and drop it. [Set a color model to respond
only to the target object; use the vision guidance
function from the 6th class to direct the robot. Note the
relation between the y track of a blob and how close it
is.]

